metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊1D10, M4(2)⋊16D10, C4≀C2⋊5D5, (D4×D5)⋊4C4, (Q8×D5)⋊4C4, D4⋊2D5⋊4C4, Q8⋊2D5⋊4C4, D4.11(C4×D5), C4.201(D4×D5), Q8.11(C4×D5), D20⋊4C4⋊4C2, D20⋊7C4⋊6C2, (C4×C20)⋊10C22, C4○D4.19D10, (C4×D5).104D4, D20.19(C2×C4), C20.360(C2×D4), C42⋊D5⋊9C2, (D5×M4(2))⋊9C2, C22.28(D4×D5), D4⋊2Dic5⋊2C2, C20.53(C22×C4), (C2×Dic5).45D4, (C4×Dic5)⋊3C22, (C22×D5).31D4, C4.Dic5⋊3C22, (C2×C20).261C23, Dic10.20(C2×C4), C5⋊4(C42⋊C22), C4○D20.10C22, D10.27(C22⋊C4), (C5×M4(2))⋊14C22, Dic5.39(C22⋊C4), (C5×C4≀C2)⋊6C2, C4.18(C2×C4×D5), (D5×C4○D4).2C2, (C4×D5).5(C2×C4), (C5×D4).19(C2×C4), (C2×C10).25(C2×D4), (C5×Q8).20(C2×C4), C2.26(D5×C22⋊C4), (C2×C4×D5).33C22, C10.66(C2×C22⋊C4), (C5×C4○D4).2C22, (C2×C4).368(C22×D5), SmallGroup(320,448)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊D10
G = < a,b,c,d | a4=b4=c10=d2=1, cac-1=ab=ba, dad=ab-1, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 638 in 154 conjugacy classes, 51 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C4≀C2, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C5⋊2C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, C22×D5, C42⋊C22, C8×D5, C8⋊D5, C4.Dic5, C4×Dic5, C10.D4, D10⋊C4, C4×C20, C5×M4(2), C2×C4×D5, C2×C4×D5, C4○D20, C4○D20, D4×D5, D4×D5, D4⋊2D5, D4⋊2D5, Q8×D5, Q8⋊2D5, C5×C4○D4, D20⋊4C4, D20⋊7C4, D4⋊2Dic5, C5×C4≀C2, C42⋊D5, D5×M4(2), D5×C4○D4, C42⋊D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C4×D5, C22×D5, C42⋊C22, C2×C4×D5, D4×D5, D5×C22⋊C4, C42⋊D10
(1 78 63 29)(2 14)(3 80 65 21)(4 16)(5 72 67 23)(6 18)(7 74 69 25)(8 20)(9 76 61 27)(10 12)(11 55 49 38)(13 57 41 40)(15 59 43 32)(17 51 45 34)(19 53 47 36)(22 33)(24 35)(26 37)(28 39)(30 31)(42 64)(44 66)(46 68)(48 70)(50 62)(52 73)(54 75)(56 77)(58 79)(60 71)
(1 40 63 57)(2 58 64 31)(3 32 65 59)(4 60 66 33)(5 34 67 51)(6 52 68 35)(7 36 69 53)(8 54 70 37)(9 38 61 55)(10 56 62 39)(11 27 49 76)(12 77 50 28)(13 29 41 78)(14 79 42 30)(15 21 43 80)(16 71 44 22)(17 23 45 72)(18 73 46 24)(19 25 47 74)(20 75 48 26)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 30)(10 29)(11 58)(12 57)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 60)(20 59)(31 49)(32 48)(33 47)(34 46)(35 45)(36 44)(37 43)(38 42)(39 41)(40 50)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(70 80)
G:=sub<Sym(80)| (1,78,63,29)(2,14)(3,80,65,21)(4,16)(5,72,67,23)(6,18)(7,74,69,25)(8,20)(9,76,61,27)(10,12)(11,55,49,38)(13,57,41,40)(15,59,43,32)(17,51,45,34)(19,53,47,36)(22,33)(24,35)(26,37)(28,39)(30,31)(42,64)(44,66)(46,68)(48,70)(50,62)(52,73)(54,75)(56,77)(58,79)(60,71), (1,40,63,57)(2,58,64,31)(3,32,65,59)(4,60,66,33)(5,34,67,51)(6,52,68,35)(7,36,69,53)(8,54,70,37)(9,38,61,55)(10,56,62,39)(11,27,49,76)(12,77,50,28)(13,29,41,78)(14,79,42,30)(15,21,43,80)(16,71,44,22)(17,23,45,72)(18,73,46,24)(19,25,47,74)(20,75,48,26), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,30)(10,29)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,60)(20,59)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(40,50)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(70,80)>;
G:=Group( (1,78,63,29)(2,14)(3,80,65,21)(4,16)(5,72,67,23)(6,18)(7,74,69,25)(8,20)(9,76,61,27)(10,12)(11,55,49,38)(13,57,41,40)(15,59,43,32)(17,51,45,34)(19,53,47,36)(22,33)(24,35)(26,37)(28,39)(30,31)(42,64)(44,66)(46,68)(48,70)(50,62)(52,73)(54,75)(56,77)(58,79)(60,71), (1,40,63,57)(2,58,64,31)(3,32,65,59)(4,60,66,33)(5,34,67,51)(6,52,68,35)(7,36,69,53)(8,54,70,37)(9,38,61,55)(10,56,62,39)(11,27,49,76)(12,77,50,28)(13,29,41,78)(14,79,42,30)(15,21,43,80)(16,71,44,22)(17,23,45,72)(18,73,46,24)(19,25,47,74)(20,75,48,26), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,30)(10,29)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,60)(20,59)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(40,50)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(70,80) );
G=PermutationGroup([[(1,78,63,29),(2,14),(3,80,65,21),(4,16),(5,72,67,23),(6,18),(7,74,69,25),(8,20),(9,76,61,27),(10,12),(11,55,49,38),(13,57,41,40),(15,59,43,32),(17,51,45,34),(19,53,47,36),(22,33),(24,35),(26,37),(28,39),(30,31),(42,64),(44,66),(46,68),(48,70),(50,62),(52,73),(54,75),(56,77),(58,79),(60,71)], [(1,40,63,57),(2,58,64,31),(3,32,65,59),(4,60,66,33),(5,34,67,51),(6,52,68,35),(7,36,69,53),(8,54,70,37),(9,38,61,55),(10,56,62,39),(11,27,49,76),(12,77,50,28),(13,29,41,78),(14,79,42,30),(15,21,43,80),(16,71,44,22),(17,23,45,72),(18,73,46,24),(19,25,47,74),(20,75,48,26)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,30),(10,29),(11,58),(12,57),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,60),(20,59),(31,49),(32,48),(33,47),(34,46),(35,45),(36,44),(37,43),(38,42),(39,41),(40,50),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(70,80)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20N | 20O | 20P | 40A | 40B | 40C | 40D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 20 | 20 | 40 | 40 | 40 | 40 |
size | 1 | 1 | 2 | 4 | 10 | 10 | 20 | 1 | 1 | 2 | 4 | 4 | 4 | 10 | 10 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | 2 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | C4×D5 | C4×D5 | C42⋊C22 | D4×D5 | D4×D5 | C42⋊D10 |
kernel | C42⋊D10 | D20⋊4C4 | D20⋊7C4 | D4⋊2Dic5 | C5×C4≀C2 | C42⋊D5 | D5×M4(2) | D5×C4○D4 | D4×D5 | D4⋊2D5 | Q8×D5 | Q8⋊2D5 | C4×D5 | C2×Dic5 | C22×D5 | C4≀C2 | C42 | M4(2) | C4○D4 | D4 | Q8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 8 |
Matrix representation of C42⋊D10 ►in GL6(𝔽41)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 37 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 21 | 39 | 23 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 25 | 25 | 9 |
35 | 35 | 0 | 0 | 0 | 0 |
6 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 40 | 40 | 40 | 37 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
35 | 35 | 0 | 0 | 0 | 0 |
40 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 37 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,21,0,0,40,0,9,39,0,0,40,32,0,23,0,0,37,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,25,0,0,0,0,32,25,0,0,0,0,0,9],[35,6,0,0,0,0,35,40,0,0,0,0,0,0,0,40,1,0,0,0,0,40,0,0,0,0,1,40,0,0,0,0,0,37,0,1],[35,40,0,0,0,0,35,6,0,0,0,0,0,0,0,1,40,0,0,0,1,0,40,0,0,0,0,0,40,0,0,0,0,0,37,1] >;
C42⋊D10 in GAP, Magma, Sage, TeX
C_4^2\rtimes D_{10}
% in TeX
G:=Group("C4^2:D10");
// GroupNames label
G:=SmallGroup(320,448);
// by ID
G=gap.SmallGroup(320,448);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,219,58,136,851,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a*b^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations